Anderson's inequality on time scales

نویسندگان

  • Fu-Hsiang Wong
  • Shiueh-Ling Yu
  • Cheh-Chih Yeh
چکیده

We establish Anderson’s inequality on time scales as follows: ∫ 1 0 ( n ∏ i=1 f σ i (t) ) t ≥ (∫ 1 0 (t + σ(t))n t )( n ∏ i=1 ∫ 1 0 fi (t) t ) ≥ ( 2n ∫ 1 0 tn t )( n ∏ i=1 ∫ 1 0 fi (t) t ) if fi (i = 1, . . . , n) satisfy some suitable conditions. c © 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new variants of interval-valued Gronwall type inequalities on time scales

By using an efficient partial order and concept of gH-differentiability oninterval-valued functions, we investigate some new variants of Gronwall typeinequalities on time scales, which provide explicit bounds on unknownfunctions. Our results not only unify and extend some continuousinequalities, but also in discrete case, all are new.

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Diamond-α Jensen’s Inequality on Time Scales

The theory and applications of dynamic derivatives on time scales have recently received considerable attention. The primary purpose of this paper is to give basic properties of diamond-α derivatives which are a linear combination of delta and nabla dynamic derivatives on time scales. We prove a generalized version of Jensen’s inequality on time scales via the diamond-α integral and present som...

متن کامل

Young's inequality and related results on time scales

We establish the classical Young inequality on time scales as follows: ab ≤ ∫ a 0 g (x) x + ∫ b 0 (g−1)σ (y) y if g ∈ Crd ([0, c],R) is strictly increasing with c > 0 and g(0) = 0, a ∈ [0, c], b ∈ [0, g(c)]. Using this inequality, we can extend Hőlder’s inequality and Minkowski’s inequality on time scales. © 2005 Elsevier Ltd. All rights reserved. MSC: primary 26D15

متن کامل

Young’s Integral Inequality on Time Scales Revisited

A more complete Young’s integral inequality on arbitrary time scales (unbounded above) is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2006